Get All Access for $5/mo

Un estudio revela que las personas encargadas de capacitar a la inteligencia artificial están delegando su trabajo... a la IA El documento indica que los entrenadores de la IA estarían usando a la misma IA para realizar su labor.

Thinkhubstudio | Getty Images

Un estudio revela que un alto número de profesionales encargados de entrenar a la inteligencia artificial (IA) podrían estar utilizando a la misma IA para realizar su labor.

La investigación destaca que para entrenar a los sistemas de IA se requiere una gran cantidad de datos, con el fin de que los sistemas puedan llevar a cabo tareas específicas de manera precisa y confiable. Para ello algunas empresas contratan a trabajadores independientes para completar tareas que son difíciles de automatizar, como resolver CAPTCHA, etiquetar datos y anotar texto.

Estas tareas se introducen en modelos de IA para su entrenamiento. Los trabajadores suelen recibir un bajo salario a cambio y deben de completar un gran número de tareas en poco tiempo.

Un equipo de investigadores del del Instituto Federal Suizo de Tecnología (EPFL) empleó a 44 personas empleadas en la plataforma de trabajos temporales Amazon Mechanical Turk, para resumir extractos de trabajos de investigación médica. Luego, analizaron las respuestas utilizando un modelo de IA que ellos mismos habían entrenado, buscando señales que indicaran la influencia de ChatGPT, como la falta de variedad en la elección de los términos utilizados.

Además, examinaron las pulsaciones de teclas de los trabajadores para determinar si habían copiado y pegado sus respuestas, lo cual sugeriría que habían generado las respuestas en otro lugar.

Los resultados del estudio revelaron que entre el 33 y el 46% de los trabajadores habían utilizado modelos de IA como ChatGPT de OpenAI para realizar su trabajo.

Según Ilia Shumailov, investigadora junior en ciencias de la computación en la Universidad de Oxford, quien no participó en el proyecto, no existe una solución sencilla para evitar que los errores se propaguen de un modelo a otro. La investigadora explicó a Technology Review: "El problema es que, cuando usas datos artificiales, adquieres los errores de los malentendidos de los modelos y los errores estadísticos. Debes de asegurarte de que sus errores no sigan la salida de otros modelos, y no hay una manera simple de hacerlo".
Entrepreneur en Español

Entrepreneur Staff

Emprendedores

Salir de la Matrix: Cómo tomar el control de tu vida para crear un futuro más gratificante

Encuentra libertad y realización abrazando nuevos caminos y abriendo tu mente a experiencias fuera de lo común.

Marketing

Las 4 objeciones más comunes que enfrentan los líderes de marketing y cómo vencerlas

Obtener rechazo es parte de la vida como vendedor. Pero si ha identificado una idea que realmente cree que tendrá un impacto en su negocio, no debería abandonarla sin luchar.

Noticias

Grok para todos: la IA de Elon Musk deja de ser exclusiva para usuarios premium

El chatbot de inteligencia artificial Grok ahora está disponible para usuarios gratuitos en X.

Noticias

'No se trata de ti': Cómo despedir a alguien de manera efectiva, según Kevin O'Leary

O'Leary afirma que si no eres capaz de despedir a alguien, no eres el líder adecuado para la organización.

Consultoría

Cómo hacer que tu negocio siga llamando la atención aunque cambie el algoritmo de Google

Si solo optimizas para Google, estás perdiendo de vista dónde pasa el tiempo tu audiencia.