Get All Access for $5/mo

Artificial Intelligence And Its Role In Healthcare AI can improve accuracy, precision and outcomes while reducing time in many facets of this ecosystem

By Dr Amit Kharat

Opinions expressed by Entrepreneur contributors are their own.

You're reading Entrepreneur India, an international franchise of Entrepreneur Media.

Pexels

Artificial intelligence (AI) is growing more common in modern industry and everyday life, and it is increasingly being used in healthcare. AI in healthcare can help healthcare providers with various patient care and administrative tasks, allowing them to improve on existing solutions and tackle challenges faster. Although most AI and healthcare technologies are beneficial in the healthcare field, support tactics for hospitals and other healthcare organizations might differ significantly.

For the past 50 years, disease detection and treatment have been at the forefront of AI in healthcare. But unfortunately, they were no better than humans at diagnosing, and their integration with clinical procedures and health record systems was less than ideal.

AI can improve accuracy, precision and outcomes while reducing time in many facets of this ecosystem. It can also assist with laboratory diagnosis, clinical diagnosis, imaging analysis, research studies, financial administration, documentation, workflow simplification and other duties in the healthcare system. Machine learning (ML), deep learning (DL), and natural language processing are some of the AI approach employed in the healthcare industry (NLP).

Medicine is an ever-changing, dynamic field dedicated to improving patient care. Hospitals, hospital administration, doctors, nurses, frontline healthcare workers, insurance companies, pathology laboratories, radiology, pharmacy, pharmaceutical corporations, research and many other parts make up a well-functioning healthcare ecosystem.

The application of various AI approaches in the healthcare sector is determined by the type of data to be analyzed. Healthcare data comes from healthcare providers, insurance companies, pharmaceutical firms and research organizations. Structured and unstructured data are the two types of data. Structured data is consistent and well-organized (for example, blood glucose values of patients taking part in a research study). At the same time, unstructured data is untrustworthy and can differ significantly from one another (for example, human language, imaging, signals such as ECG). After charting it on a correct timeline, minimizing biases, and translating it into a format understandable by the accompanying AI application, the information is ready to train the associated AI model.

AI in healthcare offers a wide range of management applications. AI in the medical context is less revolutionary than in-patient care. Simultaneously, AI saves time and money in managing a hospital. AI applications in healthcare include billing, clinical documentation, revenue cycle management and medical record management.

Machine learning, which may be used to match data across different databases, is another application of AI in healthcare for claims and payment administration. For example, insurers and providers must double-check the accuracy of the millions of claims submitted every day. Detecting and fixing coding errors and false claims saves time, money, and resources for all parties involved.

The most challenging hurdle for AI in healthcare is assuring its acceptance in daily clinical practice, not whether the technologies are capable enough to be helpful. Clinicians may eventually gravitate toward activities that need distinctively human skills and the highest level of cognition. Only medical professionals who refuse to work together can completely miss the potential of AI.

The challenges of AI in healthcare

The quality, quantity, and type of data used to train and evaluate AI models are the most critical factors for a successful AI model. With the continued growth of medical data, using the latest and most reliable data access is essential. It is also necessary to update the model regularly with new data. AI systems can only recognize correlations. In addition, the complex relationships expected by the model are often challenging to interpret.

The point is that artificial intelligence in healthcare is well established. It's a matter of time and usage that becomes a permanent part of the industry. It is the joint responsibility of all major stakeholders to ensure optimal use and constant renewal to meet the diverse needs of the healthcare sector.

Dr Amit Kharat

CEO and a co-founder, DeepTek

News and Trends

Recur Club Announces Credit Offerings for Startups Beyond Series A and SMEs

In FY 24–25, the platform also plans to deploy an additional INR 2000 crores through its Recur Swift program for startups.

News and Trends

Uber Launches Moto Women in Bengaluru, Connecting Female Riders with Female Drivers

Uber Moto Women aims to ensure safety with real-time trip sharing, anonymised contact details, and RideCheck monitoring for irregularities. It also offers 24x7 priority support via Uber's Safety Helpline for women riders and drivers.

News and Trends

Indian Venture Ecosystem Poised for Global Ascent: Recovery, IPO Resurgence, and 'Building for Bharat' to Define 2025

India's GDP is poised to scale from USD 4 trillion to USD 8 trillion over the next decade and will offer a playground that is remarkable for both founders and venture capital (VC) firms, said Pranav Pai, Founding Partner and CIO at 3one4 Capital.

News and Trends

Talent, Digital Infra, Policy, and Startups Driving India's GCC Ecosystem

By leveraging its demographic dividend and evolving policies, India is uniquely positioned to become the preferred choice for global enterprises seeking scalability, resilience, and a future-ready operational base.

Business Ideas

63 Small Business Ideas to Start in 2024

We put together a list of the best, most profitable small business ideas for entrepreneurs to pursue in 2024.

News and Trends

Key Cybersecurity Trends to Track as Threats Evolve

India has lost INR 11,333 crore to cyber fraud in just the first nine months of 2024. Nevertheless, with increasing cyber threats and public awareness, companies are taking proactive steps to safeguard their networks and devices.