Get All Access for $5/mo

Will Data Science be in Demand in the Future? Significant opportunities can be found in science and technology.

By Rajan Thapaliya

Opinions expressed by Entrepreneur contributors are their own.

An article in Harvard Business Review once called being a data scientist "the sexiest job of the 21st century." So what does one have to do to earn that title?

A data scientist can tackle multifaceted challenges through the utilization of data combined with machine learning approaches. Data science as a course, on the other hand, is a multidisciplinary field of study that combines computer science with statistical methodology and business competencies. To qualify as a data scientist, they need to possess unique experience alongside expertise within primary data science settings. This may include statistical analysis, data visualization, utilization of machine learning methodology, comprehension and assessing conceptual challenges linked to businesses.

Considering the future

What does the ideal future look like in regards to science? Science enthusiasts would likely envision a steady progression of technology over the next five years. Science and technological innovations are continuously improving, newer opportunities are being created and more recent techniques are being opened up for enhancing business operations for individuals and organizations.

Many organizations are delving into data science as the key to increasing their competitiveness. As a result, production has also improved over the last few years. Take Apple and Amazon as examples. Both companies have improved their global brand positioning, realized steady profits and are on target to continue to grow — partly due to their high-end reliance on data science.

Related: Why 'Data Scientist' Will Continue to Be 'the Sexiest Job of the 21st Century'

We are constantly being faced with unpredictable situations — like the Covid pandemic — which has called for businesses to do what they can to minimize human-to-human contact. Data science and rapidly changing technology have helped drive these changes and prove that a bright future exists. This will, however, depend on the quality and the extent of data that organizations can acquire.

Since there is a greater emphasis on consumer behavior data, organizations are constantly searching for the best way to collect this information. In addition, there have been more calls for ethics and legal compliance within every sector of the economy. This increases the need for data science to be utilized, ensuring the acquired data is safely and securely stored. Confidentiality is also of the utmost importance.

All this focus on data science makes data scientists pretty crucial for businesses of all sizes. These professionals have the competencies for developing machine learning frameworks and offer value for the vast acquired datasets at their disposal.

Despite the growing use of AI, the demand for data scientists should continue to rise. A data scientist generally delves into analyses combined with output. AI acts as the key component of machine learning, which is based on developing self-sustaining frameworks. This generates set outcomes that lack interactions. Moreover, AI delves into the aspect of an evolving framework as opposed to analyses. However, its value is still yet to be comprehensively explored, and this may pose a challenge for the future of data scientists.

Related: Reasons Why Data Science Will Continue to Be the Most Desirable Job of the Decade

But despite the projected setbacks for data scientists, various positives should keep hopes up. One is the increased granularization of data scientists' roles. The other is the increased need for expertise for attaining unique workstreams and also upholding competitiveness through the utilization of specialized knowledge. Looking forward, there will be more significant opportunities for developing more advanced algorithms and pushing the field to showcase what data scientists can offer within the world of science and technology.

Rajan Thapaliya

Data Scientist

Rajan Thapaliya is a professor of data science. He teaches at Trine University & South College. He is passionate about reading, writing and trading. He is an IBM-certified data scientist and Google-certified data analyst.

Want to be an Entrepreneur Leadership Network contributor? Apply now to join.

Leadership

Why Your AI Strategy Will Fail Without the Right Talent in Place

Using fractional AI experts through specialized platforms allows companies to access top talent cost-effectively, drive innovation and scale agile strategies for growth.

Business News

Here's What the CPI Report Means for Your Wallet, According to JPMorgan and EY Experts

Most experts agree that there will be another rate cut next week.

Productivity

6 Habits That Help Successful People Maximize Their Time

There aren't enough hours in the day, but these tips will make them feel slightly more productive.

Science & Technology

Use This Framework to Successfully Integrate AI Into Your Business Operations

Here's how to ensure both innovation and compliance when using AI in your organization.

Growing a Business

Why Business Owners Should Streamline Their Operations Now for Success in 2025

As the holiday season and year-end approach, business owners face heightened operational demands, from inventory management to spend control. By streamlining these processes and partnering with flexible suppliers, businesses can maintain efficiency, meet customer needs and focus on growth while navigating this busy period.