How to Apply and Optimize Your Algorithm When You're Ready to Run With AI Follow a tried-and-true implementation methodology of purposeful, simple and tested engineering, such as Lean AI, to unlock AI's true potential.

By Sourav Dey

Opinions expressed by Entrepreneur contributors are their own.

MF3d | Getty Images

Amazon's recently launched SageMaker artificial intelligence service is an exciting new development, but the program doesn't do it all. There's a distinct gap between innovative AI technology that exists and AI solutions that will help drive business results in your specific case. Using products such as SageMaker is like having a brand-new Tesla Model S: It's an awesome car, but it's a giant electric paperweight if you don't know how to drive.

We discussed "walking" with AI in a prior Entrepreneur article; now it's time to hit the ground running. At Manifold, we work with clients using a method called "Lean AI." Our method is inspired by many other popular processes, including human-centered design by IDEO, agile software development, the Lean Startup methodology and CRISP-DM. Lean AI has six steps: understand, engineer, model, acquire feedback, deploy and validate. Here, I'll focus on three key pieces that any entrepreneur will need to follow to optimize AI.

Related: 10 Artificial Intelligence Trends to Watch in 2018

1. Engineer: Quit playing around

Because AI engineering is software engineering, you need to use good practices such as source control, code reviews and clean interfaces, among others. Many data scientists are guilty of "playing in the sandbox," but you should always build as if you're going to production.

At Manifold, one of the most important steps we've implemented involves using Docker to take advantage of containerized data science. The resulting developer flow is cleaner and more collaborative, and it's ultimately far more productive.

People have been engineering software far longer than they've been engineering AI solutions. Applying existing development and operations best practices to AI systems will make your processes as efficient as possible.

2. Model: Start small, and scale up

When incorporating AI into your business, the possibilities seem endless. Don't let your imagination get the best of you -- even if you have big plans, you'll want to start simple and scale up. Take the advice of Emmanuel Ameisen, the AI lead at Insight Data Science, a post-doctoral fellowship program connected with big Silicon Valley names like Facebook and Zillow: Efficient problem-solving happens at the most straightforward, basic level. Baseline models will consistently deliver superior end products, especially for the user.

We use explicit rules in our process to keep simplicity in mind, particularly when applied to supervised learning problems. We believe in nailing a few features first; you can always add more later. And we always begin with classification before regression -- dealing with a set number of values rather than a continuous values -- so we can learn from the more obvious class errors.

Related: Why Small Business Should Be Paying Attention to Artificial Intelligence

3. Acquire feedback: See what (many) humans think

At the end of the day, humans will have to interact with and make sense of your AI's recommendations. Get your AI in front of users -- fast. They can tell when the AI is recommending reasonable things or the search results are relevant. In our research, we've found two major patterns: suspicion of AI and the need to post-process raw predictions.

AI models rarely gain immediate trust, especially among people who haven't worked with machine learning before. Explainable AI is still a field in its infancy, but there are great packages already, like Tree SHAP, that explain the "whys" of an AI's predictions so users feel more comfortable.

We've also found that an AI's raw predictions are often insufficient on their own. It's necessary to build a user interface that allows post-processing so users can go a little further to solve the business problem. One of our clients, a leading oil field services company, had many compressor units that were running in "stressed" situations. While raw AI predictions correctly predicted that these units were going to fail soon, that wasn't useful information to the maintenance techs. Rather, they wanted to find "normal" units that transitioned to "likely to fail."

To solve the problem, we post-processed the time series of raw predictions and built a user interface that only alerted techs when a unit had significant changes in its failure probability. This resulted in fewer false alarms and a more useful AI with fewer inefficiencies. The takeaway for us has been that the user interface, or UI, is as important as the AI.

Related: Why AI Won't Replace (Great) Salespeople

AI can accelerate businesses to new levels of insight more quickly than we know. However, AI and machine learning are still in their relative infancy. Because of the newness, business owners and entrepreneurs might be intimidated by the technology, or they might try to run with it before they can walk or even crawl. Instead, follow a tried-and-true implementation methodology of purposeful, simple and tested engineering, such as Lean AI, to unlock AI's true potential.

Wavy Line
Sourav Dey

Managing Director and the Head of Machine Learning of Manifold

Sourav Dey is a managing director and the head of machine learning at Manifold, an artificial intelligence product development studio.

Editor's Pick

She's Been Coding Since Age 7 and Presented Her Life-Saving App to Tim Cook Last Year. Now 17, She's on Track to Solve Even Bigger Problems.
Lock
I Helped Grow 4 Unicorns Over 10 Years That Generated $18 Billion in Online Revenues. Here's What I've Learned.
Lock
Want to Break Bad Habits and Supercharge Your Business? Use This Technique.
Lock
Don't Have Any Clients But Need Customer Testimonials? Follow These 3 Tricks To Boost Your Rep.
Why Are Some Wines More Expensive Than Others? A Top Winemaker Gives a Full-Bodied Explanation.

Related Topics

Business News

California Woman Arrested For $60 Million Postal Service Scam

Lijuan "Angela" Chen faces two charges that each carry a maximum sentence of five years in prison.

Science & Technology

'We Were Sucked In': How to Protect Yourself from Deepfake Phone Scams.

Phone fraudsters are using AI to clone the voices of loved or trusted people to rip them off. Here's how to detect if the phone is real or robot.

Marketing

5 Things You Can Do Now to Improve Email Marketing

Abide by these simple tricks to help your campaigns gain more visibility and generate revenue in the process.

Leadership

The Return to Office Movement is Causing a Mental Health Crisis. Employers Are Part of The Problem — But They Can Be Part of The Solution.

Employee mental health substantially worsened with the return to office demands, and it's causing disengagement and low morale. The solution demanded by employees is the answer.

Growing a Business

Trendspotting 101 — How to Stay Ahead of the Curve in Your Industry

Learn how to spot and capitalize on emerging trends in your industry with these practical tips.